Tag Archive | Research

Experts and experiments: focusing on the future

It’s been a long time now since I blogged on here. Life has been busy, not least due to a new full time role at the University of Manchester Library, working in market research and data analysis. For a little insight into just one of the many projects I am involved in there, here is a guest blog I wrote for the fascinating Books Right Here Right Now project.

A scholarly guinea pig...

A scholarly guinea pig takes a break from study to consider the future of reading. 

Hopefully I’ll find time to write more again here soon. If only I can finish the PhD at long last…

Damned Lies and Statistics?

Recently, I’ve started to analyse data gathered via the online questionnaire which is central to my thesis. This means having to get acquainted with a little bit more statistical analysis than I am comfortable with – i.e. pushing beyond the basics of mean, median, mode, and standard deviation, although naturally I first had to refresh my memory of those as well. Along with a copy of IBM’s excellent SPSS program (essentially, software for undertaking both basic and complex statistical analyses) and a copy of Julie Pallant’s SPSS Survival Manual, the complicated cycle of deriving numbers from text, recoding existing numbers into other numbers ➞ extrapolating from those numbers other, more illuminating numbers ➞ interpreting and then turning these new numbers back into narrative and prose, begins! Let’s just say that adjusting my research questions into something that will conform with the mystical world of dependent and independent variables is an intriguing process. Initial tests have led me to make a number of observations, some of which I think are worth sharing, especially with other humanities/social science researchers:

  • Contrary to popular misconceptions about the coolly objective operating manual-style of science, there are, if you care to look beyond basics, almost as many disagreements about method, applicability and interpretation when it comes to statistics as there are about whether or not god exists. Well, okay, maybe not quite as many. But you get my point.
  • The reassuring tone of a beginner’s textbook is wonderful but also dangerous. Particular authors will recommend making certain assumptions and using certain techniques that other authors argue just as convincingly against. Using one over the other may appear a trivial decision, if you are even aware (as a novice) of the debate to begin with. In reality, the decision you make about which author to trust can make a huge difference to the output you end up with. An output that cuts (or seems to) right to the heart of your research.
  • Debates flagged up in various books are troubling and usually glossed over – can we really charge ahead with parametric tests when data does not look very normal? To what extent is it justifiable to manipulate (i.e. alter) data so that different more “robust” tests can be used? If I will never in a million years understand the maths behind a given procedure, how confident can I ever really be about using it?
Question: What is the probability of a lifebelt being nearby when you fall into the water?

What is the probability of a lifebelt being nearby?

As a result of all of this, statistics are often sloppily applied or deliberately misused; researchers proceed from all the wrong assumptions because they don’t really know what they are dealing with, or they already know what result they want. Knowing that nobody will really dig very deeply anyway, it can be assumed that most readers skip ahead to the conclusions. Naturally, there will be differences according to academic field (very relevant for my work!) in how statistics are perceived, used and justified. Young Min Baek writes of statistics in communication studies:

Like most social scientific terms, statistical terms and their findings are academically and/or socially (re)constructed facts. Statistical methods are not given, but created and (re)constructed for specific reasons in various disciplines before the birth of the communication field. Methodological myths, such as subjectivity or neutrality, are reinforced by learning of statistics as something given, not as something constructed. Learning something established does not demand critical minds that statistics can be changed for more appropriate understanding of communication. Communication students simply learn statistics from a communication methodology course, or an introductory statistics course. Most, if not all, students rarely have an interest in how statistical terms or concepts are born and (re)constructed throughout intellectual history in diverse academics. They just learn the basic logic and its applications to the understanding of social worlds.1

A friend who knows just a little bit more about all this than me suggested:

If you want to get some excitement out of statistics, ignore classical probability theory and use quantum probabilities. Statistics could be more fun than the usual Kolmogorovian bore, if only statisticians would not be so boring themselves…

Hmm. Right. I think maybe what he means by that is that standard statistical methods do not capture the subtlety at the heart of chaotic “reality”. But I can’t be sure. Software helps us but also flatters us, letting us click buttons and tick boxes to pretend that we are in some ways mathematicians. For that, I am grateful but also (as a “truth-seeker”) a little concerned. How far I can do any more than learn the basic logic, is unclear, but at least  I am aware of some of these issues. I have plenty more analysis ahead of me, and I’m sure it’s going to continue being challenging, infuriating, fun, and informative. Right now though, I feel like Mulder in the X Files – the truth is out there, but I’m not sure if I will ever be able to prove it, or even if proof is the most relevant concept…watch this space!

1Baek, Y. M. (2008). The role of social statistics in communication research. Paper presented to the Rhetoric of Science and Technology Division for the 2008 National Communication Association; San Diego, November.

Information’s Future

Presenting a paper at Sheffield University’s inaugural iFutures conference, Thursday saw me taking my first trip to the Steel City. Having been a student again for 2 years now, the 5am start was a bit of a shock to the system, so I was very happy to find a lovely little on-campus cafe selling amazingly fluffy two-egg omelettes and a decent Fairtrade coffee (extra strong, naturally). Wolfing these down and wondering why, in 30 years, I’d never before heard of Yorkshire’s “famous” Henderson’s Relish (have you?) I perused the day’s programme and gave my slides a final once-over. The conference – tagline: “the next 50 years”, since Sheffield’s iSchool is currently celebrating its 50th birthday – was run entirely by Postgrads and aimed to provide a “forum for students to present forward-thinking and challenging research” in an “encouraging environment”. The organisers had accordingly “blocked” (in tongue-in-cheek fashion) their iSchool seniors from attending, focussing instead on attracting an audience of young/early-career academics. This worked out well; the event was no less intellectual, stimulating or professional, but for the students presenting, the day was made less intimidating in that ideas could be exchanged and space carved out more freely without fear of overtly supervisory objections.

Topics included the impact of ICTs on informal scientific communication, Institutional Repositories in Thailand, Chemoinformatics, telehealth project management, the ways in which public libraries can pro-actively support and respond to their communities, and a “radical” new approach to the analysis of classification schemes. A post-lunch Pecha Kucha session saw us voting via an “audience participation device” for the best and most engaging presenter. Pecha Kucha, if you haven’t come across it, is a trendy but very fun method of rapid-fire presentation – 20 slides are pre-programmed to be on screen for only 20 seconds each, meaning that the presenter ends up “pitching” a vision as much as opening up a debate and therefore has to be more creative. Facing stiff competition, Simon Wakeling’s take on the Future of the Filter Bubble was decided most worthy of a prize. My own full-length paper, which was also well received, was more traditional, describing a methodology for assessing academics’ attitudes toward new media and why that matters.

This slideshow requires JavaScript.

So what is the future of our field, which might broadly be called “Information Science”? Predicting the future is a dubious enterprise, and in an age of almost maniacal technological development, it becomes even harder to know what is scientifically probable and what is just science-fiction. Still, disclaimers aside, we can make some informed speculations based on current socio-technical trends. Two impressive keynote speakers – Professor Diane Sonnenwald (University College Dublin and the University of North Carolina at Chapel Hill) and Vanessa Murdock (Principal Applied Researcher at Microsoft Research) – were on hand to share their views. Coming from quite different perspectives, both shared thoughts about where information science should, or might, concentrate its energies. As a group, we possess much expertise that could help solve pressing social and environmental problems; failing health, climate change, inequality, global insecurity. While remedies for these might be figured out by analysts of the “big data” coming from scientific sensors and digitally mediated environments, disaster prevention initiatives and “crisis informatics” will only be successful if those creating systems, strategies and technologies are supported by experts able to assess their impacts on work patterns, task performance, and their wider (often unconsidered) socio-cultural effects.

Describing her own research into 3D medical Telepresence devices, Professor Sonnenwald emphasised that information professionals must make sure we are “at the table” when research projects and funding priorities are discussed institutionally and internationally. The kind of analyses that we undertake may lead to short-term headaches for those developing products – for example, one of her studies showed a particular device to be more flawed than its initial backers supposed – however in the long run, this is a good thing not just for them but for all of us. It’s cheaper to address design issues pre- rather than post-production, and, economics aside, we must make sure that the groups whose problems we try to solve are not inadvertently given more of them by shimmering but naively designed solutions. In an age of algorithms and automation, information science is far from redundant.

This slideshow requires JavaScript.

Vanessa Murdock focussed on how we can map the world and its preoccupations through the harvesting and analysis of social media data. Location-aware and location-based services on smartphones and web-browsers are one obvious example; Microsoft and others are working hard to build the “hyper local” as well as the personalised into their products. If you’re in Oslo and you fancy a pizza, wouldn’t it be nice to see at a click which restaurant near you has a menu to match your dietary requirements, what other customers thought about it, and where, based on your tastes, you might go afterwards? Less trivially, it would be valuable for sociologists, political economists and others to discover with reliability precisely where most tweets about Revolution X are coming from in order to ascertain the demographics of those tweeting them and what percentage of the population they actually represent. Naturally such applications are not without their issues. We need to think deeply about privacy, data protection, regulation and – at a technical level – the reliability of services based on data which are often difficult to interpret syntactically and semantically. Further, aren’t companies really just servicing the “Technorati”, treating them as typical of the needs and preferences of humanity when in fact, they are only a small and (it might be argued, insubstantial) minority? Reminding us of a need to understand the difference between solutions that work on “toy data” or simplified abstract models, and those which work when applied to reality, Murdock also pointed out that while “you should take the noble path and build things which are useful when possible, there is also a role for building things which are cool!”

Sheffield has about 60 PhD Students working in the two main research groups of their Information School, and it seems that the culture there is as lively as it is cutting edge. All of the presenters were really impressive and I’d like to thank the committee for putting together such a fun event. 🙂

New Media and Academia: Altered Attributes

Getting back to work on my thesis, I thought it might be time to be brave and
share some of my more academic musings with you. I am currently combining preparations for initial data gathering with exploration of the literature and an elucidation of my framework. I’ll not post anything on the data gathering for now. Clearly this brief extract is part of a work in progress; which makes comments especially welcome!1 🙂

To state that there is no such thing as New Media is not the avoidance of an answer: rather, it is a rejoinder which meets the question of definition head-on. It is to suggest (with the hint of a challenge) that if we are to address the subject of “New Media” in significant depth we may first have to place aside our assumptions about what is actual and what is perceived; as well as the place of metaphor. These are the very assumptions around which much of “New Media” revolves, and with which it and its practitioners play. Contrarily, the very fluidity and liminality of these types of digital media, which may be referred to as “new”, “social”, “interactive”, “mobile” or “virtual”, suggests that there are particular thresholds or boundaries within which they exist, hence typical characteristics which might be identified. Nevertheless, it is important to make clear that seizing upon or fixing some particular conception or definition of New Media would in many ways run contrary to the purpose of my thesis. What it is necessary and rather simple to accept is the relative, historically situated, and (in terms of reception and acceptance) contingent character of anything labelled “new” – which partly explains why New Media defies easy classification. Another reason why an in-transition sketch is often the best that can be offered is that “New Media” can be seen differently depending on where, how, why, and by whom, it is being considered. It refers to something constantly being updated and refreshed; continually shifting; and which frequently but unpredictably accommodates ideas, features, and perspectives not previously included. Yet it also builds on tradition and what was prior. For the academic subject or “discourse communities“, whose attitudes towards New Media are the focus of this research, this is also the case – as well as, increasingly, for the disciplines and institutions to which they belong. There, as Nowotny et al observe, “near absolute demarcation criteria have failed”.

“The notion of ‘boundary work’ implies not only that boundaries are not fixed and permanent but that they need to be actively maintained. Moreover, their definition, mapping, and maintenance, often serve a social function. Social contingency and professional expediency influence the choice of ‘stories’ about Science [including Social Sciences]. Defining the sciences, mapping their territory in public space, making and reshaping them in the image tailored for the specific time and the occasion are all part of ‘boundary work’. And scientists, as ‘boundary workers’, are actively engaged in such activities as an integral part of their scientific endeavours” [page 57]. We must first understand the “socio-epistemological meaning of context” before we are able to address and understand the political and institutional characteristics of Science. Both types of context affect knowledge structures within academic disciplines. The current shifts occurring in the “conceptualisation and enactment of Science” are part of a move toward a “Mode II” society where contextualised knowledge moves “into the context of implication” [page 201] – i.e. wider society beyond the University proper, a “social space of transformation” or, what the authors, in a re-imagining of ancient Greece’s public sphere, call “the agora”. This space is typified by, among other things, “socially distributed expertise”, and “changing rules of engagement” whereby social relationships become vertical rather than horizontal and where institutional structures and traditional modes of interaction are “aided” and altered by “the pervasive role of information and communication technologies” [page 105]. Just as time and space have been reconceptualised into the “more capacious category of space-time, so science and society “co-evolve” as an aspect of coalescence [page 49]; the distinction between academics and those who would previously have been deemed “incompetent outsiders” is no longer as meaningful an analytical tool.

Some critics point out that this was always the case; not just for Science, but also for the Arts & Humanities, and that such a perspective or vision of scholarship might be seen to date as far back as Francis Bacon’s New Atlantis. A utopian novel published in 1697, New Atlantis greatly influenced Enlightenment concepts of Scientific rationalism, even depicting participation in the academy by certain select members of the public (although in Bacon’s narrative, this is tightly-controlled, hierarchical, and revolves around the acceptance of particular customs). Others propose that it was Universities and institutions which parted Science from its original multi-varied and accommodating form. In either case, we may assume that the modern University can be broadly characterised in these terms, in particular the dominance of ICTs. Altered power structures and novel “visibility” regimes are also created by and reflected in new forms of media and communications technology. Divisions between producer/consumer, author/reader, expert/layperson are challenged and blurred; politicised discourses often position it in terms of access to knowledge, power, and a re-structured public sphere. Traditions and novelty converge and collide. Clearly then, there are strong thematic links and properties which typify both “New Media” and Academia in the 21st century. These require much further exploration.

Endnotes:
1 I have removed some inline references in support of various arguments to make this entry more blog friendly. For the most part, hyperlinks are provided instead.

Information and Communications: a first meeting on my research

Well, it’s time to start thinking properly again about the Research Proposal that brought me here. What better way than to kick some ideas around with my lovely new Supervisors? I met them this morning for a very productive exchange and a few cups of coffee. The building was strangely quiet since (swot that I am) I’m starting a little bit early. Well, quiet save for a procession of tidy-looking primary school children in blazers, who apparently were being shown around the campus!

The project that will (hopefully) 3 years from now secure me a shiny Doctorate is provisionally entitled ” New Media and Academic Researchers – Politics, Philosophies and Participation“. The idea here is that I will address the ways in which academics across disciplines perceive and make use of New/Social media within (and beyond) the research and possibly teaching lifecycles. This will be looked at in relation to theories of participation. Obviously ascertaining attitudes and perceptions is a delicate and tricky undertaking, so we are still thinking about what precise methodology will be most suitable. Repertory Grids are one strong contender, as is Sentiment Analysis. This is where my Supervisors, Frances and Jill, will be able to guide me through the territory. Whatever we decide it will be fascinating learning from them!

Jill, one of my new supervisors, introduces me to the building.

Key questions of the research are:

  • How do the attitudes of academics in various disciplines, with regard to new media, compare?
  • Can we use participatory theories (and a historical awareness of the role of scholar) to understand and analyse academic uses of/attitudes to new media?
  • Is there a typology of users, attitudes and type of use, which can be identified?
  • What are the implications for official and institutional policy, scholarly communication and the positioning of new media technologies?

There is going to be a lot of categorisation, classification, and data gathering involved in answering these questions. The end result should allow us to:

  • Analyse and interpret the changing position and responsibilities of scholarship and scholarly discourse as a result of ‘disruptive’ new media technologies.
  • Examine the extent of hierarchies, professional constraints or societal expectations of scholars on their relationship to new media.
  • Construct a typology of users based on attitudes and as a predictor of behaviours analysed and interpreted under participatory theory (assuming that participatory theory proves to be a valid and useful lens for modelling).

As you can see it’s pretty ambitious! We will need to have more discussions (next Wednesday is Meet 2) on that. Whatever the nuances, it’s pretty much agreed that scholars and academics are vital to the public sphere – as they have been since the days of the Enlightenment. With the boundaries between the “public sphere” and the “private sphere” shifting, merging, and forming all sorts of intricate relationships in the online age, it’s more important than ever that we understand what exactly is at stake for academia within that picture.

Hope you will agree this is an interesting topic! Comments and thoughts appreciated.